
Max and MSP 1

Peter Elsea 10/11/07 1

Max and MSP
MSP is an addition to Max that provides signal generation and processing objects. It
works entirely in the Macintosh, which gives you advantages and disadvantages.

Advantages:
• You can do whatever you want, not whatever marketing thought would sell.
• It doesn't cost a lot of money.
• It doesn't cost any money to change your mind about what kind of sound you want.
• When a new computer comes out, your patches won't have to be thrown away, they'll
run better!

Disadvantages:
• Your typical MIDI instrument can run circles around a Mac (even a G5) when it comes
to audio processing. So dedicated instruments will always have more channels, thicker
chords, etc.
• There can be a tiny delay when sounds pass in and out of the computer.
• You have to make things work yourself. An empty patcher won't make a sound.

Warnings:
MSP is not entirely bug free. You are going to have some crashes and freeze-ups,
especially when your patches get large. You must do three things to cope with this:
• Save often, especially when you are about to turn on audio
• If it starts to behave strangely when audio is not on, save and reboot.

You are going to have to study the tutorial (which is a PDF file on the computer- open the
manuals alias to find it). But here are some basic concepts to get you started.

The DSP Status Window
MSP operations are Set up in the DSP status window, which is found under the options
menu. There are several important settings in this window.

This section allows you to select the sound interface and synchronization source.
An interesting choice for driver is "nonRealTime". Which lets you compute complex
processes and listen later, a la Csound.

The clock source can be internal or, SPDIF if you are bringing sound in from the CD. If
SPDIF is selected and the CD is turned off, you won't hear anything.

Max and MSP 2

Peter Elsea 10/11/07 2

Prioritize MIDI means deal with MIDI output before processing audio. You may want to
set this if you notice odd timing in MIDI notes.

This sections tells how the computer is doing. Audio processing is pretty hungry, and if
CPU usage gets above 70% or so, other functions of the computer, such as processing
keyboard input will suffer.

You can change the sample rate here. The other settings will be automatically set for the
chosen sound card, but you may want to increase signal vector size if the CPU is
overloading. On the other hand, the in/out delay is directly related to this size, so smaller
is better. If you check override when you change any of these, the changes won't be
remembered in the preferences file. That's the polite thing to do.

The Max scheduler is the master clock that processes all non audio activity. When it is
placed in overdrive, all calculations happen at interrupt level, without stopping for slow
processes like screen redraws. In the old days, when computers were pokey, we kept this
on but it doesn't make a lot of difference on Gigahertz machines.

The Max scheduler is only accurate to within 1 millisecond. If you want timing tighter
than that, putting the scheduler in audio interrupt will get it down to once per vector.
(Divide vector size into sample rate to figure out how often that is.)

Check override when you change these.

Max and MSP 3

Peter Elsea 10/11/07 3

Here you can change inputs and outputs. Note that you can mix analog and SPDIF if you
want to.

Optimize only works on G4s (it turns on altivec). Setting a CPU limit may help if your
patcher is getting so big you lose control of the machine.
The AISO control panel lets you set extra parameters for the sound cards, like input level.
I/O mappings lets you define more than 2 input and output channels, and connect them to
actual channels. If you want to call an output 42, you can hear it if you map 42 to
something that exists.

MSP Basics
MSP objects have a tilde (~) after their name. Many of them have the same name (except
for the tilde) as regular Max objects. Usually, the function is similar to their namesake.

Max works with messages- int, float, list, bang, that are sent once from one object to
another. MSP works with signals that are flowing continuously whenever audio is on.

Cords that pass signals are
yellow with black stripes.
The signals really consist
of samples in batches
called vectors. The number
of samples in a vector can
be changed for various
reasons, but usually there
are 256.

You can't watch a signal with prepend set and a message box the way you can with
standard Max messages. The best you can do is grab a single sample with sah~ (sample
and hold), grab a bunch of numbers with capture~, or watch a display similar to an
oscilloscope.

Max and MSP 4

Peter Elsea 10/11/07 4

When a signal is captured, it looks like a lot of floats. The values should be between -1
and 1. A signal that swings all the way from –1 to 1 represents full scale and is very loud.
Anything larger than this will distort if it gets to a dac~.

The most primitive signal comes from sig~, which provides a constant signal – 44100
copies of the same value per second.

Number~ is another source of constant signal, with a user interface. It will also display
the value of a signal that is connected to it, but only four times a second. That's only
useful for slowing changing values. (The update rate and mode of number~ are set in the
inspector.)

Audio Output
The output of an MSP patch is the dac~ or ezdac~ (shown above, it looks like a button
with a picture of a speaker on it.) To start audio, send either a 1 or the message "start".
(You can just click on the ezdac~) This starts all audio in all windows. To hear only
audio from one window, send "startwindow". Audio will stop with the stop message, or a.
You can add signal objects while audio is running, but they may not be heard until you
stop and restart.

The left and right inlets of the dac~ correspond to left and right
stereo outputs. dac~ can have arguments that determine the
output channels, up to 16.

Audio input is handled by adc~ or ezadc~ (picture of a
microphone). You can start and stop audio with the adc~
objects also.

Levels
To adjust the volume of a signal, you use either a multiplier
[*~] (with a fractional value) or a gain~ slider. This looks very
much like the Vslider when it's in the tool palette- it just has
two little lines on the handle. When it's in the patch, it has
colored stripes.

The gain slider has two outlets-
The left one gives you the attenuated signal. The right tells the position of the slider.

The signal is applied to the left inlet. Ints at this inlet will move the slider. A change of 10
is 6 dB. The gain~ slider does increase the signal level when it is all the way up. This will
often produce distortion when used as shown.

Max and MSP 5

Peter Elsea 10/11/07 5

The level does not change instantly when you move the slider. It ramps up or down so the
signal doesn't pop. A float in the right inlet sets the ramp time (in milliseconds). It
defaults to 10 ms.

A multiplier is often a better way to control gain, if you don't need a user control. (You
should have one gain~ slider per sound.) If you think of the multiplier as equivalent to a
VCA, you'll get the idea. I usually stick a multiplier after every signal producing element
in order to get levels under control, like this:

Notice that the adder [+~] object is used to combine signals. Think of it as a mixer.
There's no difference between the two inlets -- none of that right goes in first stuff, they
are both active continuously. Adder objects are not really necessary. Any signal inlet will
add signals, but I find them a useful tool for organizing patches.

Believe me, even attenuating those
cycles~ to 0.1 gives a plenty strong
signal. Remember your decibels?

Db = 20 log v/V, where V is the
peak output of cycle~.

20 log 0.1/1 = -20 dB
20 log 0.01/1 = -40 dB
20 log 0.001/1 = -60 dB

20 dB down is noticeably quieter,
but when we add two signals like
this, the peak values of the sum will
hit 0.2, which is only one fifth of
distortion level.

Max and MSP 6

Peter Elsea 10/11/07 6

Audio input
Inputs are shown by the adc~ or ezadc~ objets.

This simply passes two channels of audio through with gain control.

This patch processes the input with a simple delay:

Max and MSP 7

Peter Elsea 10/11/07 7

Oscillators
The cycle~ object is the basic oscillator. When audio is on it puts out a sine wave at he
indicated frequency.

For more about oscillators, see Basic Synthesis in MSP.

Playing Sound Files
There are two basic ways to play sound files. With buffer~ (and its associated objects)
which plays from memory, and with sfplay~ which plays files from the hard drive. There
are advantages and disadvantages to each. Playback from memory is going to be
instantaneous, but the total playing time you get is limited by the memory available in
your computer. Remember that a minute of sound takes 5 megabytes of memory, twice
that for stereo. There is no limit to the length of a file played by sfplay~ but there may be
a slight delay in getting started, and the number of files you can have playing at one time
is limited by the speed of your hard drive system. Most systems will easily do 8 tracks
however.

Buffer~ and Friends
The buffer~ object is a holder for sound files. You have to give it a name and a size, then
put some sound into it. The size is in milliseconds, and will be a two channel unless you
specify how many in a third argument. Loading the sound is done with the read message.
There are several variations:

Read By itself read brings up a file dialog and you
find the file in the usual manner.

Read filename This will load in the file named… if the file is
in the search path defined in the Max file

There are two inlets to cycle~ the left
one controls the frequency, the right
one controls phase. Frequency is in
hertz (and there's a neat object called
mtof that converts midi note numbers
to frequency.)

Phase is a fraction of the wavetable,
so 0.25 is 90 degrees, 1.0 is a full 360.
The patch at the left doesn't make any
sound, because 0.5 is 180 degrees out
of phase, and you know what that
does!

Max and MSP 8

Peter Elsea 10/11/07 8

Preferences option. Otherwise you have to
specify the complete path, such as
/Users/pqe/Documents/SFDIR/filename.aif
Note that folders are separated with slashes. A
slash at the beginning refers to the main drive.

Read filename offset Offset is a number of milliseconds from the
start of the file to begin reading.

Read filename offset duration In addition, loads only part of the file.

Read filename offset duration channels You can read only one channel of a two
channel file if you want to.

Replace reads a file and changes the buffer size to fit
the file size.

Readagain reads the last file, but with new options if
desired.

Import reads MP3 files.

Write Write lets you save a buffer as a sound file.
Writeaiff, writesd2, writewave These specify file type, saving a step.

If you double click on a buffer~ a little window pops up showing the sound file.

Play~
The play~ object plays whatever is in the buffer it points to (you have to specify a buffer
name.) It's very primitive, rather like turning a record by hand-- you put a signal into it,
and as the value of the signal changes, play~ produces sound. Usually the signal is
derived from a line~ object, but you can use a phasor~ to play loops. All play actually
does is convert the signal coming in, (which represents time in milliseconds) into a
pointer to a sample to grab from buffer and sends that sample out. The help file gives a
fine example.

Groove~
Groove~ is the most useful buffer~ player. It can be pretty confusing until you realize
exactly what it does. It is also maintaining a pointer into the buffer~, but it has built in
line functions to move the pointer for you. If you send a float to groove~ it will cue up
the pointer, but nothing will happen until it gets a signal -- this signal determines the rate
of play, so usually a sig~ 1.0 will do it. Changing the value from sig~ will change the rate
of play-- it will even play backwards. After it plays once, you have to cue it to the
beginning to get it to play again.

Groove~ has a loop mode, where it will recue itself. You can set the loop points.

Max and MSP 9

Peter Elsea 10/11/07 9

Record~
Record~ will put audio into the buffer~. You need to specify which buffer to use (the set
message lets you change this) and number of channels if more than 1. Audio signals
connected to the inlet(s) will be recorded when a 1 is received in the left. Recording is
stopped with a 0. There are two mode flags for record:

Append when off, recording always starts at the
beginning of the buffer. When on, recording
starts where it last left off.

Loop when loop is off, recording stops at the end of
the buffer. When on, as the end of the buffer is
reached, recording moves to the beginning of
the buffer, overwriting what is already there.

 There are inlets to set the start point and end points in the buffer. These require floats
that specify time in milliseconds. Record~ does not get a direct connection to its buffer~
It has a signal output that sends a location pointer. This could be connected to a play~ to
synchronize playback from another buffer. This lets you patch multitrack features or set
up a time remaining indicator.

Here is an example of a buffer in action:

Max and MSP 10

Peter Elsea 10/11/07 10

Sfplay~
Sfplay~ plays sound files from the hard drive. The file can be in practically any format,
although paired files (such as made by pro tools) will require two sfplay~s. Arguments to
sfplay~ are:

Name of an sflist~ object , This is optional. If there is one, you can load
several files and have them ready for instant
playback.

Number of channels, up to 8, apparently.

Size of play buffer in milliseconds. A play buffer is necessary for
smooth disk operations. If you put 0, the
default size is used, which is usually fine.
Adjust buffer size if you have slow disks that
stutter when you play.

Number of position outlets the first position outlet gives the time in
milliseconds. This is rounded off from the
actual sample locations. A second position
outlet gives the round off error, so you add
them to get the precise time. The help file
shows how to convert this information into a
time display.

Name you can give the sfplay~ itself a name. Sfinfo~
can use this name to return information about
the current file.

The reference on sfplay~ is 6 pages long, and it has extensive help files. The easy way to
use sfplay~ is like this:

This will play a file for you. If you want to use the file like a bank of samples, you can
define locations as cue points with the preload command. Once a location has been
defined as cue 3 for instance, a 3 (as opposed to a 1 which starts at the beginning) will
start playback there. You can create and save complicated lists of cues with the sflist~

Max and MSP 11

Peter Elsea 10/11/07 11

object. Sflist~ lets you have cues from more than one file. Since each cue has a buffer to
start playback instantly while the disk catches up, there is a memory cost for using cues.
Figure about 40k per channel.

Other commands like speed, seek, pause and resume make playback interesting.

Sfrecord~

Recording can be just as simple as playback. With a patch like the one above:

• Open a file to record into
• Send in a 1 or the message [record length] to begin recording.
• Send a 0 to stop.

There are options for various file formats and so on. I usually just use the sfrecord~ help
file for my recordings.

Sfinfo~
Sfinfo~ provides information about selected audio files. Usually you want to know how
long a recording is, and confirm that its sample rate is appropriate for current settings.

Max and MSP 12

Peter Elsea 10/11/07 12

Testing Things
Sometimes the hardest part of working with msp patches is to find out what is going on.
The tutorial shows several common ways of measuring signals- these are nicely
illustrated in the help files.

Meter shows level. It flashes red if the signal goes above 1.0.

Avg~ gives the level whenever it is banged. You usually see a metro hooked up to it.

Number~ periodically gives the value of the most recent sample at
the right outlet. Like a sample and hold, it gives a funny pattern of
numbers on audio, is most useful for slowly chaining signals, like the
output of line~. When the arrow is showing, it creates a constant
signal at the left outlet, which you set with the mouse.

Snapshot~ gives much the same thing, but reporting can be controlled by your patch
(number~ is controlled in the get info window.)

Capture~ lets you see a chunk of signal as a series of numbers. Tedious to use, but
enlightening when everything else fails.

Scope~ Gives you pictures of signals. Its not much like an oscilloscope though, because
what it really does is flash pictures on the screen at a rather slow rate. The help files and
the tutorial don't really make the operation of scope~ very clear, so I'll have a stab at it.

The scope~ object captures the signal into a series of buffers that will be displayed on the
screen. You can set the number of buffers by sending an int into the right inlet. You can
set the number of samples per buffer at the left inlet. When the buffers are full, each is
shown as a line segment from the value of the first to last sample in the buffer. (With the
default display size, each buffer gets a single pixel in width, so the lines go straight up. If
you stretch the display, you can see some slant.)

The total number of samples that will be on the screen is the product of number of
segments per screen and samples per buffer. The defaults are 128 x 128 (16384) or about
1/3rd of a second at 44.1 kHz. This is suitable for showing low frequency waveforms, but
the screen sort of jumps, and if you increase the frequency to the audio range, the display
will probably just give you a line. To get an image of a high frequency tone, we need to
display fewer samples. It's usually prettiest to keep 128 buffers and go to fewer samples
per buffer. I usually start with around 8. If there are too many cycles showing, reduce the
number. If you only see part of the wave, increase the number.

For high frequencies, reduce the number of segments per screen until you get a stable
waveform. It may look strange, but then again the waveforms digital systems produce at
high frequencies really do look like that.

Max and MSP 13

Peter Elsea 10/11/07 13

With real oscilloscopes, you can set the sweep rate to a particular time per screen
marking and use triggering circuitry to make the waveform sit still. The settings for
scope~ are restricted to integer sample numbers, so we usually can't get convenient time
settings. We can however, calculate the time per division we are seeing. This patcher
shows how.

Dspstate~ gives the sample rate. With 8 divisions per screen and (samples per segment *
segments per screen) samples on the screen, the expression object shown will give ms per
division.

The trigger 1 message to the scope will stabilize the display if the other settings are in the
right range.

Max and MSP 14

Peter Elsea 10/11/07 14

How it all fits together
Although listening to audio and watching the screen gives the impression that everything
is steadily chugging along, the system is really backing up and stretching out like cars on
a crowded interstate.

There can only be one sample rate in effect at a time. This is determined by the sound
card settings. Assume it's 44.1k for this exercise. That means the card needs a sample (X
the number of channels) every 0.0226 ms. To make sure there's always something there,
the program can run ahead of the card, up to whatever the output buffer size is, 1024 on
the one I use.

The MSP audio interrupt is loosely locked to the audio card. The audio interrupt runs at
(Sample rate)/ (signal vector size) . If the vector is 64, an audio interrupt happens
approximately every 1.45 ms. The duration of the audio interrupt depends on the amount
of processing necessary for every audio object to do its thing on one vector. Naturally, if
it takes longer than 1.45 ms, the output buffer will start to drain. You can get away with a
couple of long vector periods (like when something turns on or goes the long way around
a branch), but they better be balanced by short ones. If the audio processes get ahead of
the card, the card will say so, and an interrupt is skipped.

Note that there is a buffer for everything that is contributing signals to the system. The
card input and any files being read all put their data into a buffer, and on the audio
interrupt, a vector's worth of samples are taken out. If the buffers are too big, input to
output takes too long, but if they too small, audio processing is broken up. (The buffer~
object is an extreme example of this, as it contains the entire audio recording.)

Also note that for proper playback, any recording should be played at the sample rate in
use when it was made. If the current sample rate is different, the program has to do some
interpolation to compensate. MSP is doing this anyway for variable rate playback. When
you specify sample rates for recordings, you are telling MSP the original SR so it knows
what to do. Sample rates are marked in audio files, but it's easy to get them messed up in
some programs.

When processing time gets tight, it would be nice to skip some calculations, especially if
they are just giving the same number over and again. You have to do this in a closed off
part of the system that is running at half the sample rate. Any signals entering this area
have to be decimated (downsampled) on the way in, and resampled back up on the way
out. The poly~ object is a nice enclosed area where this is possible, and often necessary.
In a leisurely patch, some things may sound prettier if run at twice the sample rate. I'll be
interested in finding out what these are.

Max and MSP 15

Peter Elsea 10/11/07 15

That's the bottom layer- Next we find the old Max scheduler. It can be run by the Mac
internal clock (which is a bit pokey and the source of years of complaints) or, for
accuracy, can be tied to the audio interrupts. The scheduler ticks over once a millisecond.
Note that this is faster than the audio interrupt, but on most ticks it has nothing to do.
When there is something, such as a metro to bang, everything attached starts happening
in a long involved chain. If it's not finished by the next audio interrupt, the CPU puts a
bookmark in and does the audio chores. That's why it's called an interrupt. When the
audio chain is through, scheduled tasks resume. (The pecking order of the scheduler and
audio can be reversed with the prioritize MIDI option)

There's an even slower layer. Every once in a while, after scheduled tasks are done, the
program asks the event manager (part of the operating system) if the user has typed a key
or clicked or something. If so, another long processing chain is kicked off, which can be
interrupted by audio, or if overdrive is on, scheduler tasks and MIDI input. After this sort
of thing is done, Max relaxes for a moment to let the OS catch up on outside work like
sending you messages about your network. This is all interruptible, which is why the
system will lock up if you pile on too much audio.

Max also keeps a list of things to do when the cows are milked and the chickens fed.
These are things like file operations and graphics drawing. You have often seen the
effects of this on number boxes and the like. You can move any part of a patch into this
zone with the defer object.

This is beautiful system, but it makes some things difficult and unpredictable. Here are
some questions to ponder:
What if a scheduler task needs to know the current signal value? Which of the 64
numbers in the current vector does this mean?
How is the operation of graphic sliders affected by audio load?
Why the sig~ object?
Why doesn't Signal Scope behave like the one on my bench?
How can midi controllers produce smooth audio effects?

