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ABSTRACT 

Beginner’s Mind is the newest work in the ongoing 
Sonic Improvisation Series.  This performance system is 
a combination of software and hardware designed for 
real-time sonic exploration.  This paper will describe the 
primary design strategies employed in this system, and 
discuss key aesthetic concerns. 

1. INTRODUCTION 

Unlike some of my other performance systems, [1, 2] 
Beginner’s Mind is not based on any particular 
instrument or sound source.  A primary design goal was 
to build a system that would be pliable enough to 
accommodate a wide range of unpredictable input 
sources, and work in a variety of performance contexts, 
including solo or ensemble improvisations.  To meet 
these goals, the software design is highly modular and 
can be extended or reconfigured easily.  

Several specifically iterative processes are used, but 
the signal routing design allows all processing nodes to 
connect to each other, making the entire system capable 
of unlimited signal routing and recursion.  There is a 
system-wide buffering structure capable of recording 
any sound that comes into or out of the system during a 
performance.  This sonic history can be accessed for 
playback at any point in time, and can be routed to any 
or all processing modules for additional real-time 
manipulation.  

An extensive real-time audio stream analysis 
environment is implemented that analyzes the sound 
coming into and out of the system, and tracks more than 
twenty different features. The audio stream analysis 
system is also used to calculate a composite perceptual 
identity over the course of any phrase or segment.  The 
perceptual identity measures are stored, and can be used 
for real-time, untrained timbre matching.  

 The software system is driven by a combination of 
audio analysis, generative data, and explicit control 
from foot pedals and a hardware control surface.  The 
software makes use of specially designed high-level 
control structures, such as a signal routing/mixing 
matrix that can interpolate between two 1024-point 
mixing templates using a single continuous control 
value.   

I am especially interested in balancing this complex 
signal routing and processing potential with a playable, 
intuitive control interface that supports multiple 
interaction/performance modes. 

2. SIGNAL ROUTING / MIXING 

Instead of building the signal processing network as a 
fixed configuration, this system uses a modular matrix 
mixing technique that is extremely flexible and 
powerful.  All signal processing modules are connected 
to a two-dimensional signal matrix that can route any 
input to any output at any level.  This enables dynamic 
and continuously variable signal routing and mixing, 
including serial, parallel, and tree structures with 
nesting, feedback, and adjustable delay times available 
at each node.  With these delays, it is possible to 
achieve sequential signal transformation by setting 
progressively longer delay times at each connection 
point.  In addition to enabling the processing network to 
be reconfigured on the fly, this modular matrix 
approach facilitates long-term system expansion and 
modification, as modules can be added or substituted 
without disrupting the signal architecture.   

The current signal network supports thirty-two 
inputs and outputs, for a total of 1024 possible 
connection points, each with adjustable connection 
level.  This is too much data to manage directly, so 
high-level control or navigation structures are 
necessary.  Routing/mixing templates that describe the 
connection strength of each point can be designed and 
stored.  In performance, these templates can be recalled 
in any order, with a single continuous control used to 
interpolate between two different states.  It is also 
possible to use noise or other randomly generated data 
sets to fill the templates, creating complex and 
unexpected networks.  This technique would normally 
cause the system to self-destruct because of the built-in 
feedback, but the interpolation feature makes it possible 
to delicately move between stable and unstable states, 
thereby exploring unknown territory without completely 
crashing the system.  This ability to reconfigure the 
entire signal architecture either abruptly or through 
gradual interpolation is a unique and powerful feature of 
this system. 



  
 

 
Figure 1.  Matrix routing / mixing (pixel brightness           

equals signal connection strength) 

3. PROCESSING MODULES 

Within this dynamic signal network, a wide range of 
timbral and temporal processing modules are available.  
Describing the functionality of individual modules is 
somewhat misleading because the system output is 
completely dependent on the interconnections between 
processing modules, and the status of their control 
parameters at any given moment.  Current modules 
include two types of timbre/frequency shifters, one 
based on ring modulation, and one that offsets or shifts 
FFT bins between the analysis and resynthesis stage.  
Signal decimation is available through bit depth and 
sampling rate reduction, as well as simple signal 
clipping.  Two granular-based time stretchers are 
available with adjustable rate, window and location 
controls.  Two short-term delay line scrubbers and a 
stereo granulator, both based on PeRColate objects [3] 
are implemented with adjustable delay times, scrub 
rates, and a variety of granulation controls.    

One of the more playable modules is a resynthesis 
instrument based on resonant filtering.  The current input 
signal is analyzed, with the frequencies and amplitudes 
of the eight most prominent spectral peaks used to 
control the amplitude and frequency of a bank of 
resonant band-pass filters.  This filter bank is fed a mix 

of the input signal and a noise generator.  The filter 
frequencies are only updated when an attack is sensed, 
creating a kind of time-displaced resonant shadow of the 
input sound.  The bandwidth of the filters is 
continuously variable, transforming the sound from a 
noisy, broadband spectrum to a more peaky, narrowband 
timbre.  

4. MEMORY MODULES / ARCHITECTURE 

There are several processing modules that are designed 
specifically with recursion or memory functions in mind.  
This distinction is somewhat vague because all modules 
have adjustable output delays that can be combined with 
signal routing feedback to make any module recursive.  
Modules that incorporate internal storage memory 
include spectral loopers, feedback drones, and a system 
wide recording and playback environment.  The spectral 
loopers are similar to those used in the Eighth Nerve 
guitar system [2] except the 512 band filters are located 
after the buffering structure, which means that the filters 
can continue to transform the spectral loops as they 
playback.  Controls for each of the two independent 
loopers include record start/stop, playback rate, loop 
size, frame smoothing, buffer clearing, and dynamic 
filter interpolation.  My interest in simple circular 
recording and playback functions surfaces again in the 
form of a constant feedback drone module.  This 
processor is always in record mode and continues to 
additively recycle any sound that it receives.  There are 
two output voices available for this module with 
independently adjustable feedback and 
transposition/playback rate controls.   

In addition to the many short and medium length 
buffer functions available, this system also implements a 
high-level memory or sonic history function that can 
record any signal for any length of time.  This is 
accomplished with a recording module that is given 
enough memory to record for the estimated maximum 
duration of a given improvisation.  Recording can be 
started and stopped at any time, either autonomously 
using event segmentation analysis, or under manual 
control using a foot switch.  The signal to be recorded 
can be accessed at any point in the mixing/routing 
matrix so signal input, output, or any point in between is 
available.  It is interesting to capture the unprocessed 
input signal, which can be played back later, routed 
through a different processing network than when it was 
first heard.  This allows a specific sound element to be 
transformed or reconstructed each time it is 
reintroduced.  By capturing and reprocessing the output 
stream, a remarkable level of structural recursion and 
transformation is possible.  New recordings do not 
overwrite previous recordings, so any sonic element may 
be recalled at any point during the performance, with 
variable rate four-voice polyphonic playback available.  
These carefully designed memory structures, combined 
with dynamic signal routing and mixing makes this 
performance system capable of behaviors that are 
complex yet pliable, unpredictable but formally 
cohesive.   



  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
           
 
           

Figure 2.  Audio stream analysis display 
 

5. AUDIO STREAM ANALYSIS 

This software features the most comprehensive and 
developed audio analysis implementation of any of my 
performance systems.  This system uses (in addition to 
other techniques) the analyzer~ object [4] and the yin~ 
object [5] running in Max/MSP.  Two complete analysis 
modules are utilized; one that listens to the input, and 
one that listens to the system output.  This is especially 
beneficial because a single discrete sound element fed to 
the input may continue to resonate through the system 
for a long period of time.  By placing an analysis module 
at both the input and output, a more comprehensive 
understanding of the total system behavior is available.  
Each analysis module tracks a number of features 
including pitch,  (in both note numbers and Hz) 
loudness, amplitude envelope (with adjustable attack and 
decay), brightness, noisiness, Bark scale density, and 
pitch analysis confidence.  Attack transients are analyzed 
along with the time between attacks, and the 
instantaneous loudness at the time that each attack 
occurs.  Rest detection is based on a logic relationship 
between current loudness and time since the last attack.  
These parameters are adjustable, but an example would 
read; if loudness is below –50 and the time since the last 
attack is more than four seconds, then report a rest.  
Event segmentation and feature variance measurements 
are implemented, and operate on multiple time scales to 
reflect short, medium, and long-term activity.  The 
frequency and amplitude of the eight most prominent 
spectral peaks is output, and is used to drive a resonant 
filter-based noise resynthesis module. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. PERCEPTUAL IDENTITY 

An exciting breakthrough with this software is the 
implementation of a phrase analysis and perceptual 
feature matching system, inspired by Wold [6] and 
others.  As performed sound elements are recorded into a 
master storage module, they are simultaneously analyzed 
to create a ten-value perceptual identity.  This identity 
consists of the calculated mean and standard deviation of 
the pitch, loudness, brightness, noisiness, and pitch 
stability analyses, taken over the duration of the phrase.  
This ten-value identity is calculated and stored each time 
a new phrase is performed and recorded.  As an 
improvisation progresses, this growing collection of 
performed audio elements can become quite large, 
totaling fifty or more separate phrases.  By running the 
same mean and standard deviation calculations on the 
perceptual features of the audio input, it is possible to 
make comparison between the current sound, and the 
collection of previously performed sounds.  Stored 
sounds can be recalled based on their perceptual 
relationship to the current sound.  An example would be 
to search the stored sounds for the one that is closest to, 
or furthest away from the current sound, across all 
perceptual features.  This system is working reasonably 
well, and can usually match the instrument or sound 
type, as well as differentiate performance styles within a 
given sound subcategory. 

7. SYSTEM INTEGRATION 

Because of the modularity, complexity, and high number 
of controllable parameters available with this system, 



  
 
developing navigation and interaction strategies has been 
quite challenging.  In an attempt to address the concerns 
of a variety of performance settings, I am designing this 
system with multiple control/interaction modes in mind.  
As discussed elsewhere [2] the relationship between 
autonomous, manual, automated, and analysis-based 
controls will greatly influence the behavior of a 
performance system, with certain relationships proving 
more appropriate to certain types of interaction.   

For solo improvisations, I am more interested in 
autonomous and unpredictable system behavior, while in 
a group setting, a higher degree of playability is usually 
advantageous.  If I use a system to process another 
performers sound, a high level of direct control may be 
most useful.  In the past, I have designed instruments 
and performance systems for use in one primary context 
with the potential for overlap into adjacent settings.  This 
software system appears to have the depth and flexibility 
to make it usable in a variety of settings, so multiple 
control modes seem to be worthwhile.  To facilitate 
these multiple interaction strategies, I have centralized 
all control functions into one location within the 
complex software environment.  Several different 
control modules can be connected to each parameter, 
and it is possible to switch between these control options 
with global mode messages.  The mode setting can be 
decided at the start of a performance, or changed 
spontaneously while the system is in use.    

The solo improvisation mode relies primarily on a 
combination of audio analysis based data, random and 
generative functions, and high-level meta-controls.  
Because this system is designed for use with a variety of 
sound sources or instruments, sensor-based manual 
controls are impractical.  The primary physical control 
interface is a simple set of foot switches and two 
continuous foot pedals.  The switches can be used to 
initiate events, such as recording or playback start/stop, 
or select specific mixing/routing templates.   

In the current setup, one continuous pedal is used to 
control the interpolation between selected 
mixing/routing templates, and the other controls a 
specific continuous parameter that changes based on the 
status of the foot switches or other system conditions.  
For example, when the foot switch for the master 
recording module is pressed, the secondary continuous 
pedal is mapped to a mixing module that crossfades 
between the input and output signal.  This type of 
interdependent controller remapping makes it possible to 
access many different parameters with only a few simple 
hardware controls.  

High-level audio analysis based controls are used 
extensively in the solo performance mode.  The activity 
analysis and event segmenters can be used to 
autonomously initiate various control functions 
including starting and stopping recording modules, 
triggering randomly selected buffer playback, and 
clearing system memory at major event junctions.  The 
lower-level audio analysis data is used primarily to 
animate micro-controls on various modules, such as 
frequency shift offset, delay scrub speed, time stretch 

window size, and multiple granulation parameters.  This 
creates responsive and ever changing sound 
transformations, even if only a single process is being 
utilized.        

In addition to the solo performance mode, other 
control models are under development, including a fully 
autonomous mode where the only input to the system is 
the microphone.  In this mode, all control functions are 
driven by input analysis, generative data, and logic 
routines without manual or explicit user control.  On the 
other extreme, I am designing a control interface in 
which nearly every parameter is brought up on a 
hardware control surface.  This design will be useful for 
group settings when I am processing the sounds made by 
other performers and need a more direct interface.  
Perhaps the most compelling aspect of this complex 
design is the possibility of moving into and out of the 
various modes in real-time.   

8. CONCLUSION 

It is still too early to make final pronouncements 
regarding this system.  Many more performances across 
a range of contexts will be necessary before I can 
understand this complex instrument/system.  I am 
excited by the possibility of exploring a range of 
interaction strategies and sonic spaces from within a 
highly flexible, modular framework.  My hope is that 
this approach will allow more time to be directed 
towards exploring interaction strategies, instrument 
design, and performance practice, with less time 
devoted to low-level system construction. 
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