

BEGINNER’S MIND: AN ENVIRONMENT FOR SONIC
IMPROVISATION

Thomas Ciufo

Arts, Media, and Engineering
Arizona State University

tc@ciufo.org

ABSTRACT

Beginner’s Mind is the newest work in the ongoing
Sonic Improvisation Series. This performance system is
a combination of software and hardware designed for
real-time sonic exploration. This paper will describe the
primary design strategies employed in this system, and
discuss key aesthetic concerns.

1. INTRODUCTION

Unlike some of my other performance systems, [1, 2]
Beginner’s Mind is not based on any particular
instrument or sound source. A primary design goal was
to build a system that would be pliable enough to
accommodate a wide range of unpredictable input
sources, and work in a variety of performance contexts,
including solo or ensemble improvisations. To meet
these goals, the software design is highly modular and
can be extended or reconfigured easily.

Several specifically iterative processes are used, but
the signal routing design allows all processing nodes to
connect to each other, making the entire system capable
of unlimited signal routing and recursion. There is a
system-wide buffering structure capable of recording
any sound that comes into or out of the system during a
performance. This sonic history can be accessed for
playback at any point in time, and can be routed to any
or all processing modules for additional real-time
manipulation.

An extensive real-time audio stream analysis
environment is implemented that analyzes the sound
coming into and out of the system, and tracks more than
twenty different features. The audio stream analysis
system is also used to calculate a composite perceptual
identity over the course of any phrase or segment. The
perceptual identity measures are stored, and can be used
for real-time, untrained timbre matching.

 The software system is driven by a combination of
audio analysis, generative data, and explicit control
from foot pedals and a hardware control surface. The
software makes use of specially designed high-level
control structures, such as a signal routing/mixing
matrix that can interpolate between two 1024-point
mixing templates using a single continuous control
value.

I am especially interested in balancing this complex
signal routing and processing potential with a playable,
intuitive control interface that supports multiple
interaction/performance modes.

2. SIGNAL ROUTING / MIXING

Instead of building the signal processing network as a
fixed configuration, this system uses a modular matrix
mixing technique that is extremely flexible and
powerful. All signal processing modules are connected
to a two-dimensional signal matrix that can route any
input to any output at any level. This enables dynamic
and continuously variable signal routing and mixing,
including serial, parallel, and tree structures with
nesting, feedback, and adjustable delay times available
at each node. With these delays, it is possible to
achieve sequential signal transformation by setting
progressively longer delay times at each connection
point. In addition to enabling the processing network to
be reconfigured on the fly, this modular matrix
approach facilitates long-term system expansion and
modification, as modules can be added or substituted
without disrupting the signal architecture.

The current signal network supports thirty-two
inputs and outputs, for a total of 1024 possible
connection points, each with adjustable connection
level. This is too much data to manage directly, so
high-level control or navigation structures are
necessary. Routing/mixing templates that describe the
connection strength of each point can be designed and
stored. In performance, these templates can be recalled
in any order, with a single continuous control used to
interpolate between two different states. It is also
possible to use noise or other randomly generated data
sets to fill the templates, creating complex and
unexpected networks. This technique would normally
cause the system to self-destruct because of the built-in
feedback, but the interpolation feature makes it possible
to delicately move between stable and unstable states,
thereby exploring unknown territory without completely
crashing the system. This ability to reconfigure the
entire signal architecture either abruptly or through
gradual interpolation is a unique and powerful feature of
this system.

Figure 1. Matrix routing / mixing (pixel brightness

equals signal connection strength)

3. PROCESSING MODULES

Within this dynamic signal network, a wide range of
timbral and temporal processing modules are available.
Describing the functionality of individual modules is
somewhat misleading because the system output is
completely dependent on the interconnections between
processing modules, and the status of their control
parameters at any given moment. Current modules
include two types of timbre/frequency shifters, one
based on ring modulation, and one that offsets or shifts
FFT bins between the analysis and resynthesis stage.
Signal decimation is available through bit depth and
sampling rate reduction, as well as simple signal
clipping. Two granular-based time stretchers are
available with adjustable rate, window and location
controls. Two short-term delay line scrubbers and a
stereo granulator, both based on PeRColate objects [3]
are implemented with adjustable delay times, scrub
rates, and a variety of granulation controls.

One of the more playable modules is a resynthesis
instrument based on resonant filtering. The current input
signal is analyzed, with the frequencies and amplitudes
of the eight most prominent spectral peaks used to
control the amplitude and frequency of a bank of
resonant band-pass filters. This filter bank is fed a mix

of the input signal and a noise generator. The filter
frequencies are only updated when an attack is sensed,
creating a kind of time-displaced resonant shadow of the
input sound. The bandwidth of the filters is
continuously variable, transforming the sound from a
noisy, broadband spectrum to a more peaky, narrowband
timbre.

4. MEMORY MODULES / ARCHITECTURE

There are several processing modules that are designed
specifically with recursion or memory functions in mind.
This distinction is somewhat vague because all modules
have adjustable output delays that can be combined with
signal routing feedback to make any module recursive.
Modules that incorporate internal storage memory
include spectral loopers, feedback drones, and a system
wide recording and playback environment. The spectral
loopers are similar to those used in the Eighth Nerve
guitar system [2] except the 512 band filters are located
after the buffering structure, which means that the filters
can continue to transform the spectral loops as they
playback. Controls for each of the two independent
loopers include record start/stop, playback rate, loop
size, frame smoothing, buffer clearing, and dynamic
filter interpolation. My interest in simple circular
recording and playback functions surfaces again in the
form of a constant feedback drone module. This
processor is always in record mode and continues to
additively recycle any sound that it receives. There are
two output voices available for this module with
independently adjustable feedback and
transposition/playback rate controls.

In addition to the many short and medium length
buffer functions available, this system also implements a
high-level memory or sonic history function that can
record any signal for any length of time. This is
accomplished with a recording module that is given
enough memory to record for the estimated maximum
duration of a given improvisation. Recording can be
started and stopped at any time, either autonomously
using event segmentation analysis, or under manual
control using a foot switch. The signal to be recorded
can be accessed at any point in the mixing/routing
matrix so signal input, output, or any point in between is
available. It is interesting to capture the unprocessed
input signal, which can be played back later, routed
through a different processing network than when it was
first heard. This allows a specific sound element to be
transformed or reconstructed each time it is
reintroduced. By capturing and reprocessing the output
stream, a remarkable level of structural recursion and
transformation is possible. New recordings do not
overwrite previous recordings, so any sonic element may
be recalled at any point during the performance, with
variable rate four-voice polyphonic playback available.
These carefully designed memory structures, combined
with dynamic signal routing and mixing makes this
performance system capable of behaviors that are
complex yet pliable, unpredictable but formally
cohesive.

Figure 2. Audio stream analysis display

5. AUDIO STREAM ANALYSIS

This software features the most comprehensive and
developed audio analysis implementation of any of my
performance systems. This system uses (in addition to
other techniques) the analyzer~ object [4] and the yin~
object [5] running in Max/MSP. Two complete analysis
modules are utilized; one that listens to the input, and
one that listens to the system output. This is especially
beneficial because a single discrete sound element fed to
the input may continue to resonate through the system
for a long period of time. By placing an analysis module
at both the input and output, a more comprehensive
understanding of the total system behavior is available.
Each analysis module tracks a number of features
including pitch, (in both note numbers and Hz)
loudness, amplitude envelope (with adjustable attack and
decay), brightness, noisiness, Bark scale density, and
pitch analysis confidence. Attack transients are analyzed
along with the time between attacks, and the
instantaneous loudness at the time that each attack
occurs. Rest detection is based on a logic relationship
between current loudness and time since the last attack.
These parameters are adjustable, but an example would
read; if loudness is below –50 and the time since the last
attack is more than four seconds, then report a rest.
Event segmentation and feature variance measurements
are implemented, and operate on multiple time scales to
reflect short, medium, and long-term activity. The
frequency and amplitude of the eight most prominent
spectral peaks is output, and is used to drive a resonant
filter-based noise resynthesis module.

6. PERCEPTUAL IDENTITY

An exciting breakthrough with this software is the
implementation of a phrase analysis and perceptual
feature matching system, inspired by Wold [6] and
others. As performed sound elements are recorded into a
master storage module, they are simultaneously analyzed
to create a ten-value perceptual identity. This identity
consists of the calculated mean and standard deviation of
the pitch, loudness, brightness, noisiness, and pitch
stability analyses, taken over the duration of the phrase.
This ten-value identity is calculated and stored each time
a new phrase is performed and recorded. As an
improvisation progresses, this growing collection of
performed audio elements can become quite large,
totaling fifty or more separate phrases. By running the
same mean and standard deviation calculations on the
perceptual features of the audio input, it is possible to
make comparison between the current sound, and the
collection of previously performed sounds. Stored
sounds can be recalled based on their perceptual
relationship to the current sound. An example would be
to search the stored sounds for the one that is closest to,
or furthest away from the current sound, across all
perceptual features. This system is working reasonably
well, and can usually match the instrument or sound
type, as well as differentiate performance styles within a
given sound subcategory.

7. SYSTEM INTEGRATION

Because of the modularity, complexity, and high number
of controllable parameters available with this system,

developing navigation and interaction strategies has been
quite challenging. In an attempt to address the concerns
of a variety of performance settings, I am designing this
system with multiple control/interaction modes in mind.
As discussed elsewhere [2] the relationship between
autonomous, manual, automated, and analysis-based
controls will greatly influence the behavior of a
performance system, with certain relationships proving
more appropriate to certain types of interaction.

For solo improvisations, I am more interested in
autonomous and unpredictable system behavior, while in
a group setting, a higher degree of playability is usually
advantageous. If I use a system to process another
performers sound, a high level of direct control may be
most useful. In the past, I have designed instruments
and performance systems for use in one primary context
with the potential for overlap into adjacent settings. This
software system appears to have the depth and flexibility
to make it usable in a variety of settings, so multiple
control modes seem to be worthwhile. To facilitate
these multiple interaction strategies, I have centralized
all control functions into one location within the
complex software environment. Several different
control modules can be connected to each parameter,
and it is possible to switch between these control options
with global mode messages. The mode setting can be
decided at the start of a performance, or changed
spontaneously while the system is in use.

The solo improvisation mode relies primarily on a
combination of audio analysis based data, random and
generative functions, and high-level meta-controls.
Because this system is designed for use with a variety of
sound sources or instruments, sensor-based manual
controls are impractical. The primary physical control
interface is a simple set of foot switches and two
continuous foot pedals. The switches can be used to
initiate events, such as recording or playback start/stop,
or select specific mixing/routing templates.

In the current setup, one continuous pedal is used to
control the interpolation between selected
mixing/routing templates, and the other controls a
specific continuous parameter that changes based on the
status of the foot switches or other system conditions.
For example, when the foot switch for the master
recording module is pressed, the secondary continuous
pedal is mapped to a mixing module that crossfades
between the input and output signal. This type of
interdependent controller remapping makes it possible to
access many different parameters with only a few simple
hardware controls.

High-level audio analysis based controls are used
extensively in the solo performance mode. The activity
analysis and event segmenters can be used to
autonomously initiate various control functions
including starting and stopping recording modules,
triggering randomly selected buffer playback, and
clearing system memory at major event junctions. The
lower-level audio analysis data is used primarily to
animate micro-controls on various modules, such as
frequency shift offset, delay scrub speed, time stretch

window size, and multiple granulation parameters. This
creates responsive and ever changing sound
transformations, even if only a single process is being
utilized.

In addition to the solo performance mode, other
control models are under development, including a fully
autonomous mode where the only input to the system is
the microphone. In this mode, all control functions are
driven by input analysis, generative data, and logic
routines without manual or explicit user control. On the
other extreme, I am designing a control interface in
which nearly every parameter is brought up on a
hardware control surface. This design will be useful for
group settings when I am processing the sounds made by
other performers and need a more direct interface.
Perhaps the most compelling aspect of this complex
design is the possibility of moving into and out of the
various modes in real-time.

8. CONCLUSION

It is still too early to make final pronouncements
regarding this system. Many more performances across
a range of contexts will be necessary before I can
understand this complex instrument/system. I am
excited by the possibility of exploring a range of
interaction strategies and sonic spaces from within a
highly flexible, modular framework. My hope is that
this approach will allow more time to be directed
towards exploring interaction strategies, instrument
design, and performance practice, with less time
devoted to low-level system construction.

9. REFERENCES

[1] Ciufo, T. Three Meditations for Prepared
Piano and Computer.
http://www.ciufo.org/research.html

[2] Ciufo, T. “Design Concepts and Control
Strategies for Interactive Improvisational
Music Systems”. In Proceedings of the MAXIS
International Festival / Symposium of Sound
and Experimental Music, Leeds, UK, 2003.

[3] Trueman, D. and L. DuBois. Percolate
Software.
http://www.music.columbia.edu/PeRColate

[4] Jehan, T. Perceptual Synthesis Engine: An
Audio-Driven Timbre Generator. Masters
Thesis. Massachusetts Institute of Technology,
2001.

[5] Cheveigne´, A. d. and H. Kawahara. “Yin, a
Fundamental Frequency Estimator for Speech
and Music”. Journal of the Acoustical Society
of America, 2002.

[6] Wold, E., T. Blum, et al. “Content-Based
Classification, Search, and Retrieval of
Audio”. IEEE Multimedia, 1996.

